On continuity and compactness of some vector-valued integrals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector-valued integrals

Quasi-complete, locally convex topological vector spaces V have the useful property that continuous compactly-supported V -valued functions have integrals with respect to finite Borel measures. Rather than constructing integrals as limits following [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936][Pettis 1938] characterization of integrals, which has good functorial properties...

متن کامل

Preview of vector-valued integrals

In contrast to construction of integrals as limits of Riemann sums, the Gelfand-Pettis characterization is a property no reasonable notion of integral would lack. Since this property is an irreducible minimum, this definition of integral is called a weak integral. Uniqueness of the integral is immediate when the dual V ∗ separates points, meaning that for v 6 v′ in V there is λ ∈ V ∗ with λv 6=...

متن کامل

Compactness in Vector-valued Banach Function Spaces

We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...

متن کامل

Some Properties of Vector-valued Lipschitz Algebras

‎ Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.

متن کامل

On the Gaussian approximation of vector-valued multiple integrals

By combining the ndings of two recent, seminal papers by Nualart, Peccati and Tudor, we get that the convergence in law of any sequence of vector-valued multiple integrals Fn towards a centered Gaussian random vector N , with given covariance matrix C, is reduced to just the convergence of: (i) the fourth cumulant of each component of Fn to zero; (ii) the covariance matrix of Fn to C. The aim o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2013

ISSN: 0035-7596

DOI: 10.1216/rmj-2013-43-3-1015